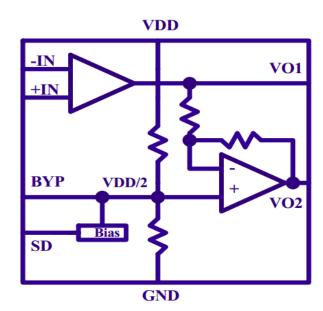


芯片功能说明:

- ② SL8002A是一款AB 类,单声道带关断模式 ,桥式音频功率放大器。在输入 1KHz,5V 工作电压时,最大驱动功率为: 3W,(4 负载,THD<10%),2W,(4 负载,THD<1%);音频范围内总谐波失真噪音小于 1%(20Hz·20KHz);SL8002A应用电路简单,只需要极少数外 围器件,就能提供高品质的输出 功率。8002A 输出不需要外接耦合电容或上举电容、缓冲网络、反馈电阻。
- Ø SL8002A采样 SOP 封装, 特别适用于低功 、 小体积的便携式系统 &L8002A可以通过控制进入休眠模式, 从而减少功 :SL8002A内部有过热自动关断保护机制 &L8002A工作稳定,且单位增益稳定。通过配置外围电阻可以调整放大器的电压增益,方便应用。是一款深受市场欢迎,用户认可度高的典型芯片。

芯片功能主要特性:

- **Ø** 输出功率 高(4,1KHz 频率), THD+N<10%, (3w):THD+N<1%,(2W).
- Ø 掉电模式漏电流小: 16µA (典型)
- Ø 采样 SOP8 封装
- Ø 外部增益可调
- Ø 宽工作电压范围 2.2V-5.5V
- Ø 不需驱动输出耦合电容、 自举电容 和缓冲网络
- Ø 单位增益稳定
- Ø SHUTDOWN 引脚悬空芯片可以正常工作。
- ∅ 芯片第3脚无功能


SOP-8

芯片基本应用:

- Ø 个人电脑
- Ø 便携式消费类电子产品
- Ø 无源扬 声器
- Ø 玩具及游戏机

SL8002A内部原理框图:

典型应用图

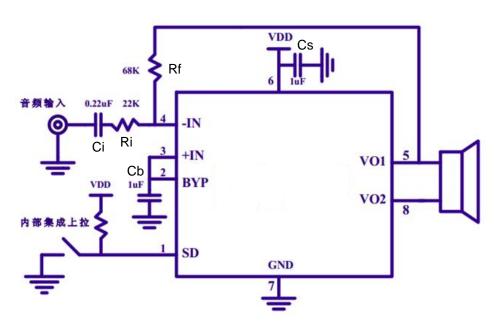


图 1. SL8002A典型应用图

SL8002A 封装引脚图

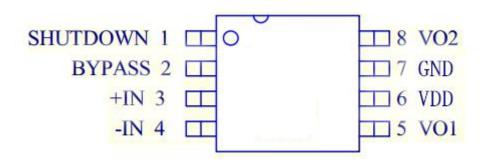


图 2. SL8002A SOP-8 封装管脚分布图

SL8002A引脚描述

管脚号	符号	描述
1	SD(shutdown)	高电平芯片停止工作,低电平芯片正常工作
2	BYP(bypass)	内部共模 压旁路电容
3	+IN	NC
4	-IN	模拟输入反相端
5	VO1	模拟输出端 1
6	VCC	源正
7	GND	源地
8	VO2	模拟输出端 2

外围元器件描述:

器件	功能描述		
1. R _i	与 R_f 一起设置闭环增益的输入电阻,同时还与 C_I 形成了高通滤波器,且 f_C =1/(2 π R_I C_I)。		
2. C _i	输入耦合电容,主要用于隔离运放输入端的直流电压,同时还与输入电阻R _I 构成高通滤		
	波器, $f_C=1/(2\pi R_I C_I)$ 。		
3. R _f	与Ri共同设置闭环增益的反馈电阻。		
4. C _s	提供电源滤波器的电源旁路电容,参照"应用信息"部分设置和选取恰当的旁路电容。		
5. C _B	V _{DD} /2 参考电压Bypass引脚的滤波电容,参照"应用信息"部分设置和选取恰当的旁路电容		

应用信息:

1. 桥式输出结构说明

由电路原理图中可知,SL8002A芯片内部有两对放大器组成,且其结构有稍微的差异。前级输入运放 的增益可在芯片外部进行设置,而后级输出运放在芯片内部已经设置了反向的单位增益。芯片输入运放的闭环增益由Rf和RI进行设置,而输出运放的增益则由芯片内部的两个 20kΩ的电阻所 固定。图 2 所示前级运放的输出作为下级运放的输入,导致两级运放的输出信号大小保持一致,仅相位相差 180⁰,因此,芯的增益应为:

$$A_{VD} = 2 * (R_f/R_i)$$

当在输出端V₀₁和V₀₂之间接上不同的负载时,运放就建立了"桥式模式"。桥式模式工作方 式与通常应用时负载一端接地的单端模式不同。桥式运放在设计上也与单端模式有所差异,例 如在对负载提供驱动能力上,其输出幅度是输入电压的两倍。从而,在相同条件下与单端模式 相比可提供四倍的输出功率。这就在不限制电流和发音清晰的情况下提高了输出功率。为了选 择合适的闭环增益而不试用额外的喇叭系统所使用的高频传感器回路,请参考"音频功放设计"部分。

应用与耳机音频功放中的桥式结构,同样优于单端运放。因为不同的输出信号 V_{O1} 和 V_{O2} 的中心电平为 $V_{DD}/2$,不存在与地之间的直流电压。还省掉了在单端单电源 (单端输出)模式结构中 需要的输出耦合电容。如果在单端输出运放中不加入输出耦合电容,其 $V_{DD}/2$ 电压就直接通过负 载到地将导致芯片内部功耗增大,同时还会损坏喇叭。较大输出耦合电容(如 470uF)与负载 (8 Ω)构成了一个高通滤波器来防止低频响应。这种结构不会对小于 20Hz以下的信号产生响应,但是要在PCB板的尺寸和系统成本,低频响应之间进行折中考虑。

2. 功率损耗

功率损耗是在设计一个成功的运放(不管是桥式还是单端)时所主要关心的。桥式运放提 升功率的一个直接的结果就是芯片内部功耗的增加。式(1)中示出了一个桥式运放在给定的电 源电压下驱动一个指定的输出负载时的最大功耗。

$$P_{DMAX} = 4*(V_{DD})2/(2\pi^2 R_L)$$
 (1)

因为 SL8002A在同一个芯片封装中有两个运放工作,其内部最大功耗是单个运放的 4 倍。即使随着功耗的增加,SL8002A也不需要散热片。由式(1),假设使用 5V 电源和 8Ω负载,其最大功耗为 625mW。从式(1)计算所得的最大功耗不能高于式(2)所得的功耗

$$P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$$
 (2)

对于SL8002A的表面级封装, θ_{JA} =140℃/W, T_{JMAX} =150℃。依赖于系统工作的环境温度 T_A ,(2)可用于计算由芯片封装所能承受的内部最大功耗。如果式(1)的结果比式(2)大,此时就需 要降低电源电压或者提高负载阻值。在 5V电源和 8 Ω 负载的典型应用下,没有其它因素影响最大 结温,器件工作于最大功耗时最大的环境温度可接近 62.5℃。由于功耗是输出功率的函数,因 此如果典型工作时不工作在最大功率附近,故环境温度还可以适当提高。

3. 电源旁路

对于任何功放,恰当的电源旁路选择是低噪声性能和过高电源过滤至关重要的。BYPASS 和 电源管脚电容的位置应尽量接近芯片。大的电源旁路电容的增加可以提升低频时的 THD+N,这也 应归咎于电容的增加提高了电源的稳定性。典型应用 10uF 和 0.1uF 的旁路电容于 5V 电源,来提高 电源的稳定性,但不仅仅局限于 SL8002A的电源旁路。旁路电容尤其是 C 的选择,依赖于低频 THD+N,系统成本和尺寸的折中考虑。



4. 关断功能

为了在不使用芯片时降低功耗,SL8002A带有 SHUTDOWN 引脚来关断运放的偏置电路。当逻辑 高电平加于 SHUTDOWN 引脚上时,SHUTDOWN 就启动使运放关断,输出与扬声器立即断开。当电源 电压作用于 SHUTDOWN 引脚上时,典型的关断静态电流为 16uA。在多数应用中,外部输入信号一般通过一个微处理器的管脚控制,它可以提供一个快速平滑的转换。另外一个方法是通过单极 点、单向开关和一个上拉电阻实现,当开关闭合后,信号 SHUTDOWN 接地,芯片可以正常工作; 当开关打开后,信号 SHUTDOWN 通过 47kΩ的上拉电阻接到电源,将会使芯片关断。在 SL8002A内部 没有上拉电阻,故 SHUTDOWN 引脚电压由外部设置,或者将内部逻辑门悬空,以防导致运放不能正常工作。

芯片封装尺寸 SOP-8

8002A SHUTDOWN 引脚悬空芯片可以正常工作。

如没有特别提示,所有尺寸标注均为: (毫米)